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Abstract

NASA/IPL ATRSAR data were acquired over Minto Flats, Alaska on 18 July 1993 These data were
used Lo investigate the ability of multifrequency, multipolarizition SAR to distingmsh vegetative com-
tnnities and the presence of standing waler, parameters divectly related to methane exchange rates.
Boreal communities were accurately differentiated using hoth statistical and neural network classifica
tion techmiques applied to fully polarimetric Iooand C band d da. Similar classification accuracies were
also obtained using, a non-polarimetric subset ol the data, saalogous to dati that would he available

from combining, obscrvations from JERS 1, ERS 1, and RADARSAT.

1T Introduction

Northern ccosysteins represent a complex heterogencous mixture of methane producing source and
consuiming, sink arcas. Because of the size and inmecessibility of northern ceosystems, then precise
contribution to the global methane budget is uncertain,  Currtently, remote sensiug, techuology for
dircetdly monitoring, surlace mcthane exchanpge rates is not available. However, it may be possible
to indirectly monitor methane exchange rates by 1emotely sensing vepotation type and presence ol
absence of surface water, factors well correlated with methane emission (Morrissey and Livingston
1092). Synthetic aperture radar (SAR), in particular, appe s to be well-suited for this application
(Morrissey et al. 1994). The ability of SAR to detect surface water heneath vegetation has been
well docwented (Hess e al. 1990). Recent studies also supgest that SAR e distinguish wetland
vepetation types (Pope et al. 1994). Because of the existence and plans for several spaceborne missions
(RS 1T and 2, JERS 1, RADARSAT, ENVISAT), SAR oflrs the posaibility of providing a means
of spatially integrating hydrolopic and vegetative parameter corresponding to methane exchange on
local 1o regional scales (Morrissey et al. 1994). Furthermore, multiple SAR obeervations could provide
information on changes through the prowing scason and betvoeen years,

by this paper, we investigate the ability of munltipolarized multifrequency SAR to distinguish vege
tation types and the presence or absence of standing water it a boreal setting as they relate to methane
excliange, We describe the data used in this study and then present results of using, both statistical
and neural network classifiers. Results are presented for both the fully polivhmetyic radar parametear

sel and for non polarimetric subscts, such as would be produced by PRS- DRSS 1) and RADARSAT.




2 1 a Description

\

I'he data used i this study were acquired over Minto Flits, Alaska, on 8 July 993, using the
NASA/J L DC8 A RSAR polarinictric tadar (Preciman et al 990). 3ccause of severe interference at

“oand, only band and C-hand data are used in this study. The data

Fave heen averaged

1o 64 Jooks, to reduce speckle noise, resulting noa resolution of approximately 50 m. Because Minto

Flats s composed of extensive wetlands, there is alinost no variation in topography within the mage.
The e of the data acquisition was near the seak, mid-summer growing, season, as determiied by
visits to the site. Additional ground truth for the arca was desermined frann US Geological Survey and
US Soil Conscrvation Service maps of the area

At the time of the A RSAR acquisition, he areca was divided into four ¢ asses with respect to
methane exchange rates, based on previous ficld measurceinents,  iphest ciissions were from fens,

which are harbaceous sedges and grasses with standing surlace water, S¢

ond  nghest cmissions are

from bodies of water without vegetation,

g, lakes and ponds, The third « bogs, which consist

of low-lymyg, shirubs with a black spruce overstory and intermiittently waterlogged soil. This class can
represent a low methane sonrce or weak sink, depending on the Hosition of the local water table. The

fourth class consists of well drained forest and tal shiub arca-. Arcas belonpging to this class have zero

met ane ermssion; they often absor oy very siall quantitios of 1

cthane. Table  shows he environmenta

characteristics of cach of the four classes, including, typical methane exchange rate (Maorrissey et al,
1064).

Table 2 shows the nmican of he ~ and C-band and V'V cross sectio

o, I /VV polarization

ratio 1’1 V/HH lincar depolarization ratio LDR, HH-VV correlation cocllicient p, and HH-VV phase

difference o Tor each class. The standard deviation of the cross section C1r tatlos 1s approxtmately

'
ano

2 d1, the standard deviation of pis approximately 0.15, and the standard dev

G0, Note that for 64 looks, the s

tion of o is approximately

tandard devia ion of he cross sec 1on doe 1o speckle alone should

be 0.6 d o The 2 dB standard deviation noted hiere is probably related to spatia variability of  he

vegeta don aud hydrology within elasses. The incidence angle for the da s ranges from 307 to H0¢, and

fittle dependence of radar parameters with incidence angle wis noted
3 Classificationr Mecetl ¢ s

Classification of SA - imagery has een approached using both statistical and neural network algorithims,

and we examine both of these techniques for our application. Yor the statistical classifier, we follow




the work of (Rignot and Chellapa 1992) who developed a maximarmn a posteriore (MAP) classifier. The
MAP classifier for the complete image is found by maximizing the probablity density function (PD1Y)

of the pixel labels conditioned on the radar observations. Applying Bayes' tule to this PDF yields

(1.

Nyocp{ D)p( XL )

where X s the array of radar data and 1. is the array of pixcl labels. Following, (Rignot and Chellapa
1692}, p(1.) is found by modeling the labels as a Markov Random Field, where the conditional probability
of the label at a single pixel depends only on the lsbels of the inmuediate naghborhood of the pixel.
Again following, (Rignot and Chellapa 1992), p(X|1L) is assuined to be the product of the conditional
PDEFs for each pixel p(a|l). However, while Rignot and Chellappa assuied that variance in the radar
characteristics is determined entirely by speckle, we choose 1 allow each radar parameter to have an

cipirically determined variance. Assuming Gaussian statistics and disgonal covariance matrix,

plall- 1) zexp(- J/f)> :(Jj'/’z'j):’ ’0,}) ]/‘/JJO;'J’) (2)

J i

where 2 i's a constant, andfiij and n';-'j are the mean and vaia nee, 1espectively, of the jih eleiment of
the parameter vector o for class 7. Thie Gau ssian asswinption should be reasonably accurate for many
look data. The diagonal covariance matrix assuinption can bapproximately satisfied if the parameters
arc chosenproperly. This is the case for the parameters uscdan the next section. Thie MAY classifier
is implemented by first finding p(X L), 1f L is found by maxiimzing this function alone, the result is
the maximu likelihood (ML) solution. The MAT solution i. then found by using, the M1 solution as
the initial 1L in a siimulated anncaling procedure (Press et al  1992) which maximizes p(L)p(X|1.).

Neural networks have also been applied to the rada classification problem (Hara et al. 1994). The
neural network (h'N) approach has the adva ntaipe of being vou-parametiic 1o assutnptions about the
underlying probability structure are made. To perform the neural network classification, we chose a
three-layer, feedforward neural network (Tappmann 1987) and used backpropagation for training. The
network ha s a mumber of input nodes equal to the nomber of radar parametas, 20 nodes ju the hidden
layer, and 4 oulput nodes (corresponding, to the four classe . in Table 1), As implemented here, the
neural network classifies ecach pixel based only on thie radar parameters at that pixel. Correlations

between pixels are not cousidered, similar to the M L statisti al classification,

4 Results

A training set consisting, of 381 64-lTook sanples was developed, The radar paramcter vector consists of

the radar parameters LI o¢, LPR, LLDR, 1p, Lo, CHH/LHH 6 ratio. CPR, CLDR, Cp, aud Ca.




The cross sect ons and their ratios are expressed in dB. The statistical] and neural network classifiers
were trained and were then tested on a set of 64 look test site s that we re adjacent go the training, sites.
Beeause the model for p(/. ) requires the full inage, the M1 dassifier rather than MAP classifier was
used on the test sites. Theresulting confusionmatrices are show ninTaible 3. The overall classification
accuracy I8 81% for both classific rs. Both were able to reliably detect ftirf,-its, fens, and open water.
Bogs were often misclassified as forest. As canbeseeninlable 2 the characteristics of bogs and forests
appear Lo be very sinilar . so the confusion is not suprising. We also examined data acquired on May
71991, just as snow was melting. In this sce ne niany of the bogs hiave very low backscatter relative to
forests. This suggests that ar v improvement in classification wcuracy 13y be obtained by using data
acquired at multiple times. Such thine series data should be routinely available {rom spaceborne SAR.

Next, weapplied both the statistical and neural network te chniques to the fuliradar image. The M1
and NN classifiers produced siinilarresults, with the M1, being somewhatbetter. The MAY  classifier,
however, produced significantly bel ter results since it takes 1nto accounit the correlation between pixel
labels. T'he results for the MAY classifier arc showninFigure 1. 1 he high producing methane fens
arc showninwhite, while forests arc black. The hog areas are dark gray, andopenwater is light gray.
Many of the fens surround open water, as would be expected  The classification map in Figure 1 is iu
goodag reetnent with our g ro und truth information.

Finally, 1t is of interest to exatnine the accuracy of clas: ification using, only those neasurenents
that would be avail able from the JERS-T, RADARSAT and BIRS- 1 satellites, namely the backscatter
cross scetionso® at LI, CHH, and GVV. Table 4 shows the resulting confusion matrices for M1,
class ification using only 0¢ mcasurcinents. LU results are very similarto the fully polarimetric case
in Table 3, except that the classi ficati on of bops is less accurate, The overall accuracy is 18 %, as
compared to 81% for the fully polarimetric case. As compare:d with LIH, CH dat a has a much lower
classifi cation accuracy for fens. CVV (not shown) is quite similar to CHH. To the right of the CHH
case arc theresulls of using two input paramcters, nancly, LI tand the CH 11/11 [11 ratio, The results
are quite similar to the LHH case in Table 4, excepol that the bog dassification is slig hitly iinproved.
To the right of this case are the results CHI and CVV/CH 1L Thie results are similar to the ca se of
using only CHIFor CVV. The accuracy of the forest classification is lower but classification of fens, and
parti cularly bogs, is iinproved. Finally, results for LIH, CHB/LUH, and CHH/CVV are shown al the
far right inTable 4 and are shinilar to using LI only, except that the accuracy of the bog classification
is improved. The overall accuracy is 81%, identical to the fully polarimebric case for both ML and NN

classifiers. We also used these parameters for M AP classification of the enthre image (not shown) and



found results very sitnilar to Figure 1

5 Conclusions

We acquired Al RSAR data over various Alaska nboreal ccosystems as part of ancflort to evaluate
the potential of SAR in ecosystemn process studies which require classification of vegetation types and
presence or absence of standing water. We examined the multi- frequency, mult i- polarization signatures
or four vegelation classes: upland forests and tall shirublands, shrub POgS, open water, and fens. I'hese
range from near zero methane cinission to very high methane cmission. Using fully polarimetr ic .- and
C- band data, the Maxiinum e Posteriori classification) methsd produced pood results, separating all
four classes, The highmethane emitting fen class was particularly well separated. I'he least accurately
classified class wasbogs, due to thar similarity to forests. It was noted that use of data at othier timnes
of the year maymprove thie classification of bogs. This possibility should be further investigated using
sat ellite SAR dala.

Tests were runto determine whether parameters available from one or more non-polarimetric radars
could also be used toseparate the four vegetation classes. The classification results using only the
LU, CH and CVV cross section data were very similar to the fully polariinetric case. Furthermore,
accurate classification of fells, water, and forest was obtained using LB 1 da ta only. These results
confirm the wtility of SAR data in methane excha nge st udics and suggest that useful results can be

obtained with systems that are already in o peration or will b inthe near future.
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Figure Captlions

Figure 1. Classification of Tully polarimetric L- and C-band it nagery using M AY classifier. Black is

forest and tall shrub.Dark gray is shrub bog. Light gray is open water, and white is fen.




(lass

1) Yorest
2) Bog
3) Water
4) Ten

Class
1) Forest
?) Bog

3) Water
4) Yen

Oin
(dB)
-7.9
-7.8
=217
-14.7

Description

deciduous andconiferous forests
tall alder and willow shrublands
black spruce and shrub bogs
with tussocks

open water inlakes and ponds
herbaceous grasses andsedges

Drainage
well drain cd

poor

poor

T'able 1: Vegetation Classes

I.-band
ovy PR 1LDR p o
(dB)  (dB)  (dB) (deg.) (dB)
-8.3 0.4 -6.7 0.34 4
7.7 -0.1 -7,0 0.39 =165
-25.4 -2.3 -10.0 0.37 218
-13.7 -1 -7.6 0.27 31

Tiry O
(dh)  (d1)
-5.4 -6.0
-41 -h2
-23.7 223
-H.4 -0.8

Methiane Binission
(mg - 2hr- 1)
0.0
0.4

1.0
20.0

C-band

PR 1.DR p
(dB)  (deg.)

0.6 -6.2 0.41
0.9 -6.9 0.35
-1.4 -6.5  0.26
0.4 -7.3  0.25

Table 2: Mean Radar Paramcters for the Vegetation Classes

Assessed Class Assessed Class
True Ml NN
Class | 1 2 3 4 9 4
] 61 17 0 0 3 0
2 23 30 o 5 24 32 0 2
3 0 51 1 0 0 b4 1
4 13 12 0 16561 13 30 o0 14/

Table 3: Confusion Matrices for ML and NN Using Polarimetric Data
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